FOCETA – Foundations for Continuous Engineering of Trustworthy Autonomy

Project Overview and Early Results

Chih-Hong Cheng

DENSO AUTOMOTIVE Deutschland GmbH

ISO 26262 Digital Conference

Goals and Partners

(? ?

The breakthrough targeted by FOCETA is a **practical** and **demonstrably effective** methodological framework for the **formal modelling and verification of dependable learningenabled components**, and for the **rigorous design of learning-enabled autonomous systems**. The new method will combine the advantages of data-based and model-based techniques towards ensuring Safety, Security and improving Performance, at lower costs and in shorter time.

H2020 ICT-50-2020 - Software Technologies

Foundations for Continuous Engineering Trustworthy Autonomy

- Some of the FOCETA addressed challenges
 - Introduce essential dependability and performance <u>specifications</u> for learning-enabled autonomous systems
 - Scalable verification techniques for learning-enabled components
 - Unified approach that combines <u>learning</u> from data and synthesis from specification
 - Monitoring the faithfulness of decision-making at runtime
- Concluding remarks

Foundations for Continuous Engineering Trustworthy Autonomy

- Some of the FOCETA addressed challenges
 - Introduce essential dependability and performance specifications for learning-enabled autonomous systems
 - Scalable verification techniques for learning-enabled components
 - Unified approach that combines learning from data and synthesis from specification
 - Monitoring the faithfulness of decision-making at runtime
- Concluding remarks

Foundations for Continuous Engineering Trustworthy Autonomy

Requirement for learning-enabled components

- Element out-of Context (EooC)
 - Assumptions
 - Guarantees
 - List of triggering conditions that may lead to functional insufficiencies
 - ...
- Research questions:
 - How far can we go with formal specification?
 - Background: to integrate the GSN-subtree of EooC to the main GSN
 - Can formalized specification sharpen our understanding?
 - E.g., decide the proper validation target

Perception (Object Detection)

S.ObjDetect	UC-AVP 01	Functional	Within X meters of range from the Ego vehicle, the object detection component shall identify pedestrians in their correct position.					
		Sou Saf	urce: L. Gauerhof, R. Hawkins, C. Picardi, C. Paterson, Y. Hagiwara, I. Habli: Assuring th ety of Machine Learning for Pedestrian Detection at Crossings. SafeComp'20, pp 197					

Let's try to formulate it more precisely

Foundations for Continuous Engineering Trustworthy Autonomy

Perception (Object Detection)

	S.ObjDetect	UC-AVP 01	Functional	Within X meters of range from the Ego vehicle, the object detection component shall identify pedestrians in their correct position.
In	one brainstormir	ng session:	Sour Safet	ce: L. Gauerhof, R. Hawkins, C. Picardi, C. Paterson, Y. Hagiwara, I. Habli: Assuring the y of Machine Learning for Pedestrian Detection at Crossings. SafeComp'20, pp 197-21
	def (sensor) If sensor <=5 if (detection() = 1) return 1	main ALW	n := forall x in Objects, /AYS (range(x) -> pedestrian(x) -> detec	r(x))

Always 'Detected correctly' Until 'distance>X'

Object detection is $\ensuremath{\text{Always}}$ True when object distance in [0,X]

the requirement is under-specified: depends on how realistic we want to be, need to know how frequent we want to execute.

Always(y \in detected() iff \exists x. Pedestrian(x) and distance(ego, x) <= X and and distance(x,y) <= epsilon) ALWAYS (range(x) -> pedestrian(x) -> detect(x) range(x) := distance(x,ego) <= X detect(x) := ODC_pedestrian(x) && | ODC_position(x) - position(x) | < epsilon

 $forall Pd, Ps, X : ped_pos(Pd, Ps) \land ego_range(X) \land in_range(Ps, X) -> identified(Pd)$

Lead to

Proper hiding of formal specifications, if one wants to use it

Need for a central **ontology** for specification, together with tool support

Foundations for Continuous Engineering Trustworthy Autonomy

Perception (Object Detection)

|--|

∀ pedestrian:

always (is_in_X_meters(pedestrian)

 \rightarrow (od_identified(pedestrian)

&&

| od_pred_location(pedestrian) - act_location(pedestrian) | <= K)</pre>

- [Unrealizability issues] Some pedestrians can be occluded by all sensors.
- [Monitorability issues] There exists certain predicates that are associated with the ground-truth

Foundations for Continuous Engineering Trustworthy Autonomy

Lead to

- Some of the FOCETA addressed challenges
 - Introduce essential dependability and performance specification for learning-enabled autonomous systems
 - Scalable verification techniques for learning-enabled components
 - Unified approach that combines learning from data and synthesis from specification
 - Monitoring the faithfulness of decision-making at runtime
- Concluding remarks

Verification techniques covered by FOCETA

- Testing
 - Model-based testing (this talk)
 - Additional coverage criterion for relative completeness
 - Al-assisted testing of CPS

- Formal verification
 - Understand the applicability and limitation of formal verification for learning-enabled systems

Foundations for Continuous Engineering Trustworthy Autonomy

Combinatorial Testing for Safe ML

Munich Schwabing A9 highway

Source:

- <u>C.-H. Cheng</u>, C.-H. Huang, G. Nührenberg. "nn-dependability-kit: Engineering Neural Networks for Safety-Critical Autonomous Driving Systems". In: ICCAD'19
- <u>C.-H. Cheng</u>, C.-H. Huang, H. Yasuoka. "Quantitative Projection coverage for testing ML-enabled autonomous systems". In: ATVA'18

DAYTIME	morning		day		evening		night	
HAZE/FOG	no			yes				
STREET CONDITION	dry	wet	wet ic		y snow		broken	
Sky	cloudy		,	no		clear		
RAIN	no			yes				
REFLECTION ON ROAD	no			yes				
SHADOW ON ROAD	no			yes				
VRU TYPE	6	child						
VRU pose	pedestrian		jog	jogger		cyclist		
VRU CONTRAST TO BG	low			high				

Source: C. Gladisch, C. Heinzemann, M. Herrmann, M. Woehrle. "Leveraging combinatorial testing for safety-critical computer vision." In: SAIAD'20 (BMWi KI Absicherung)

> Foundations for Continuous Engineering Trustworthy Autonomy

Foundations for Continuous Engineering Trustworthy Autonomy

- Some of the FOCETA addressed challenges
 - Introduce essential dependability and performance requirements for learning-enabled autonomous systems
 - Scalable verification techniques for learning-enabled components
 - Unified approach that combines learning from data and synthesis from specification
 - Monitoring the faithfulness of decision-making at runtime
- Concluding remarks

Combining learning from data and synthesis from specification

- Deep learning with domain knowledge integrated
 - Potential integration point: layer, loss, data
- Simple output range constraints → enforce the output range in the design of DNN
 - Example: Imitate MPC controller using DNN for Lane-Keeping Assist (*)
 - Output "steering angle" is constrained to be [-60,60] degrees
 - The output value should only be between [-1.04, 1.04] \rightarrow
 - In architecture design, tanh [-1,1] followed by constant 1.04 scaling

(*) <u>https://www.mathworks.com/help/reinforcement-</u> learning/ug/imitate-mpc-controller-for-lane-keeping-assist.html

> Foundations for Continuous Engineering Trustworthy Autonomy

How does Weight Correlation Affect the Generalisation Ability of Deep Neural Networks?

Regularisation Based on Weight Correlation

 Training considering weight-correlation-based regularization improves the generalization ability of CNNs (convolutional) and FCNs (fully-connected).

> Continuous Engineering Trustworthy Autonomy

Imitation learning with safety-aware loss function

A combined of model-based and AI based control algorithm to learn human-like autonomous driving, that satisfy both safety and comfort objectives

- Some of the FOCETA addressed challenges
 - Introduce essential dependability and performance requirements for learning-enabled autonomous systems
 - Scalable verification techniques for learning-enabled components
 - Unified approach that combines learning from data and synthesis from specification
 - Monitoring the faithfulness of decision-making at runtime
- Concluding remarks

Decision faithfulness

- Focus not on using additional modalities for cross-check → monitoring within the single modality is the target
- Methods exists to estimate uncertainty
 - E.g., MC-dropout, entropy, ...
 - However, the uncertainty should be **calibrated** in order to be used
 - Calibration requires a <u>defined process</u>
 - Recent results in NeurIPS'20 (*) shows that, even under the binary classification setup, the sharpness of calibrated confidence is hard to be guaranteed without prior knowledge of the distribution

(*) C. Gupta, A. Podkopaev, and A. Ramdas, "Distribution-free binary classification: prediction sets, confidence intervals and calibration," NeurIPS'20.

Foundations for Continuous Engineering Trustworthy Autonomy

- Some of the FOCETA addressed challenges
 - Introduce essential dependability and performance requirements for learning-enabled autonomous systems
 - Scalable verification techniques for learning-enabled components
 - Unified approach that combines learning from data and synthesis from specification
 - Monitor the faithfulness of decision-making at runtime
- Concluding remarks

Foundations for Continuous Engineering Trustworthy Autonomy

FOCETA

- Model-based engineering & data-driven engineering meet in the middle, towards something better
- Challenges
 - Specification
 - Verification
 - Learning
 - Monitoring

Foundations for Continuous Engineering Trustworthy Autonomy

Use Case Ongoing – Automated Valet Parking

The currently constructed use case utilizes a virtual engineering framework, with the baseline from the Siemens tool chain, e.g.,

- Simcenter Amesim
- Simcenter Prescan

Integrate all partners contribution in design, verification, and validation of safe AI functionalities.

Thank you

FOCETA

Foundations for Continuous Engineering Trustworthy Autonomy

Chih-Hong Cheng DENSO AUTOMOTIVE Deutschland GmbH

c.cheng@eu.denso.com

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 956123.